Nuclear smuggling - much of it from civil nuclear programs - presents a significant challenge. The IAEA's Illicit Trafficking Database records over 650 confirmed incidents of trafficking in nuclear or other radioactive materials since 1993. In 2004 alone, almost 100 such incidents occurred. Smuggling can potentially provide fissile material for nuclear weapons or a wider range of radioactive materials for use in “dirty bombs”.
Civil nuclear plants are potentially attractive targets for terrorist attacks because of the importance of the electricity supply system in many societies, the large radioactive inventories in many facilities and of the potential or actual use of “civil” nuclear facilities for weapons research or production.
The problem of radioactive waste management is nowhere near resolution. Not a single repository exists anywhere in the world for the disposal of high-level waste from nuclear power. Only a few countries - such as Finland, Sweden and the US - have identified potential sites for a high-level waste repository.
Advertisement
The legal limit for the proposed repository at Yucca Mountain in the US is less than the projected output of high-level waste from the reactors currently operating in the US. If global nuclear output was increased three-fold, new repository storage capacity equal to the legal limit for Yucca Mountain would have to be created somewhere in the world every three to four years. With a ten-fold increase in nuclear power, new repository storage capacity equal to the legal limit for Yucca Mountain would have to be created somewhere in the world every single year.
Whatever Bob Hawke might think on the matter, attempts to establish international repositories are likely to be as unpopular and unsuccessful as Pangea Resources’ bid to win support for such a repository in Australia. Pangea abandoned its proposal in 2002.
Synroc - the ceramic waste immobilisation technology developed in Australia - seems destined to be a permanently “promising” technology. As even nuclear advocate Leslie Kemeny concedes, Synroc "... showed great early promise but so far its international marketing and commercialisation agendas have failed".
Enough of the bad news: renewable energy, mostly hydroelectricity, already supplies 19 per cent of world electricity, compared to nuclear's 16 per cent. The share of renewables is increasing, while nuclear's share is decreasing. Wind power and solar power are growing by 20-30 per cent every year. In 2004, renewable energy added nearly three times as much net generating capacity as nuclear power. (In Australia, only 8 per cent of electricity is from renewable energy - down from 10 per cent in 1999.)
The biggest gains are to be made in the field of energy efficiency. Energy experts have projected that adopting a national energy efficiency target could reduce the need for investment in new power stations by between 2,500 - 5,000 MW by 2017 in Australia (equal to about 2-5 large nuclear power stations). The energy efficiency investments would pay for themselves in reduced bills before a nuclear power station could generate a single unit of electricity.
The Australian Ministerial Council on Energy has identified that energy consumption in the manufacturing, commercial and residential sectors could be reduced by 20-30 per cent with the adoption of current commercially available technologies with an average payback of four years.
Advertisement
A July 2002 study by The Australia Institute (pdf file 139KB) maps out a plan to achieve a 60 per cent reduction in greenhouse gas emissions in Australia by 2050. The study envisages widespread energy efficiency measures, a major expansion of wind power, modest growth of hydroelectricity, significant use of biomass and niche applications for solar photovoltaic electricity.
And in 2004, the Clean Energy Future Group - which comprises renewable energy companies and the Worldwide Fund for Nature - produced a report which details how major greenhouse gas emissions reductions can be achieved. It finds that Australia can meet our energy needs and halve greenhouse gas emissions by 2040 using a range of commercially-proven fuels and technologies. The study envisages the following energy mix by 2040: natural gas providing 30 per cent; biomass from agriculture and plantation forestry residues, 26 per cent; wind, 20 per cent; photovoltaic and solar thermal systems, 5 per cent; hydroelectricity, 7 per cent; while coal and petroleum continue to play a minor role in electricity generation.
Discuss in our Forums
See what other readers are saying about this article!
Click here to read & post comments.
50 posts so far.