The modern academic research career is centered around a single output: the peer-reviewed publication. Peer-reviewed publications - especially when accepted to high-impact journals - can make or break one's career in the modern academy. Specifically in STEM fields, these publications are required of scientists to get hired, receive tenure, and establish credibility. And they are the primary means by which scientific knowledge is disseminated within the academy. Yet although publishing is one effective means to share knowledge, does the centrality of the peer-reviewed publication in the academy impact the type of knowledge that is produced?
I'd argue, yes.
In today's academic science environment, a variety of incentives shape what research questions scientists ask and the type of knowledge that is ultimately published in the world's top science journals. There are, of course, myriad additional ways in which the academic publishing system impacts our collective science knowledge, particularly in the space of knowledge dissemination, as I've argued elsewhere. But the scientific process starts by conceiving a research question, and the tentacles of journal publishers reach all the way to this initial step and beyond, influencing funding, training, and, ultimately, scientific progress.
Advertisement
Following the money trail
If one reads any tenure-track job ad in the sciences, grant funding is clearly a requirement for a successful academic research career. Although many universities offer new assistant professor "start-up funds" to launch their research programs, ultimately professors must win highly competitive federal research grants to fund their labs and career. To obtain these grants, academics must devise the "right" research questions that will yield results of interest, publish findings in the field's top journals, and attract further funding.
Funding agencies, however, don't simply fund any well-conceived research program. They fund specific research programs that align with the strategic goals of that agency, specific divisions, and programmatic initiatives. For example, the National Science Foundation (NSF), the premier federal funding agency for basic research, has a labyrinth of specific funding programs one must navigate and align their research proposals with the hopes of procuring funding. This is a problem because professors are now limited to researching topics that are well-aligned with current funding priorities. Without procuring funding, professors can't train students, buy lab equipment, or travel to conferences, which could jeopardize being granted tenure at their institution and thwart their ascendance of the academic ranks.
Here's where the publishing system impacts knowledge production: Once a professor has their research funded, they must publish their findings for the grant to be deemed "successful"-and to increase their chances of continued funding. Progress and final reports for NSF grants, for instance, require submission of published articles and conference papers to demonstrate the impact of their funded research. This cycle of funding and publishing further entrenches priority areas of research and continues to constrain open inquiry of research areas that may not fall within the scope of funders and journal editors.
And these impacts are not limited to professors. Graduate students-the next generation of scholars-are equally guided by the funding process. Grant funding allows professors to hire students and postdoctoral associates to work on preestablished lines of inquiry. Thus, the next generation of scholars' own research paths are already guided by funders' priorities. The academic publishing system thus shapes not only the questions that research labs investigate but also the training and education of those working in these labs who are ultimately the next generation of scientists. When guided by funding and publishing constraints, where's the space for true open inquiry?
An antiquated system
If the incentives of the academic publishing system are negatively impacting scientific knowledge production, what is the alternative? Is the academic publishing system all bad? It is obviously true that the traditional approach to scientific publishing has supported great advancements of knowledge in the past. After all, peer-reviewed publication helps ensure that we do not blindly accept scientific claims without understanding the methods by which such claims are based-a worthy goal indeed!
This argument, however, rests on the assumption that the academic publishing system we know today, which specifically relies on prepublication peer review, is a historically robust system.
Advertisement
But this is not necessarily true.
Coming into its modern form in mid-century America, academic journals were, in fact, the most effective way for scientists to communicate with one another. Peer review became standard across major journals such as Nature only in the 1970s after becoming increasingly common over the course of about a century. The academic publishing system has since morphed into a hugely profitable industry that now instead shapes knowledge production, inhibits dissemination, and can even reduce the impact of research findings because papers take months or years to publish and are then locked behind paywalls and institutional barriers.
The continued existence of this antiquated academic publishing system relies on the structural conservatism of the academy in the sense that it is resistant to change and innovation. This is, in part, why faculty are still hired on the basis of the journals they publish in rather than the quality of their research, lecturing has remained the dominant teaching approach in classrooms for more than a century, and technology continuously fails to live up to its promised disruption.