If you grew up in New South Wales in the 1940s, 50s and 60s, there's a good chance that you studied maths with the help of the textbooks written by two high school teachers, A. G. Aitkin and B. N. Farlow. I knew the books well, because I used them too, and Alec Aitkin was my father. They were mostly for the early years of high school, and he would write them, and draw all the diagrams, on the dining-room table outside my bedroom, from about 6 am until breakfast, which was one of his jobs too. In later life I followed him both in writing books and in making breakfast. He was a good role model.
Dad was convinced that everyone had maths in them, and he had stories to tell to illustrate his belief. One was about a lacklustre student at Canterbury Boys High School in the late 1930s, who explained his poor results by saying that maths meant nothing to him. A few years later Dad encountered him one Saturday morning, the young man, as one might have said at the time, 'dressed up like a pox-doctor's clerk'.
'How's everything?' asked my father. 'You seem to be doing well!'
Advertisement
'Great,' was the reply. 'I'm a bookie's penciller'.
'You?' Dad was lost for words. 'But you didn't like maths.'
'Oh, that was then,' he replied. 'There's nothing to maths if you really need it. Actually, I like it.'
Dad loved that story, and we heard it many times. I could counter, later in life, with stories of my friends who had become maths teachers, and loved it, though they had not been proficient at the subject at school. I was the eldest of three boys, and all of us turned out to be decently competent at whatever we studied, but I was the cause of much head-shaking when school reports came in: 'Don should do much better…' was a common summary. What vexed Dad was my poor performance in mathematics.
'You're too quick and too careless,' he said. 'I know you can do all this stuff easily, but you just dash it off, and make simple errors. Why don't you go back when you've finished and check everything you've done? You'll do a lot better that way.'
At the end of my sixth class I followed his advice - perhaps he had given it again the night before the exams. The papers were OK, and as usual, I worked quickly. Instead of looking around to see if I were the first to finish, I went back and checked. I certainly had made errors, and fixed each of them up. When the results came out, I had scored a perfect 400 out of 400 for all the mathematics papers. Dad was jubilant, and the experience stayed in my mind thereafter. What is more, I felt at home with numbers, and still do. Today we call that feeling 'number sense'.
Advertisement
In 1950 Dad went to be head of the mathematics department at Armidale Teachers College, and most of my secondary schooling was in Armidale. At the end of third year I had to make an awkward choice. My best subject was history, but I liked maths too. Alas, they were opposed, and I couldn't do physics without both maths. My parents didn't press for one route or the other. It was, finally, up to me. So I went down the humanities path. I have many times wondered what would have happened if I had done what my brothers did - double maths, physics and chemistry.
Meanwhile my father had become involved in teaching teachers how to teach mathematics, both in primary school and high school. He became known to generations of teachers as 'Tin Tin', not because of any daring exploits, but because of his Broken Hill pronunciation of 'ten', as in 'tin times tin'. He already believed that the core problem was the way in which children were taught arithmetic in infants and primary school, and he set out to solve it. He developed a wide network of primary teachers who understood what he was about.
In 1957, on long-service leave overseas, he encountered the coloured rods invented by the Belgian primary school teacher Georges Cuisenaire, and fell for them at once. Back in Australia, they became a basic element in his arsenal, because their use as play allowed pupils to see number relationships for themselves. So many primary teachers, most of them women, had not enjoyed mathematics themselves, and used strict rules as the basis for their teaching. If a child asked a question they could not answer, their tendency was to put the child off, which caused the child to lose interest. In Cuisenaire rods he saw a means by which children could learn by themselves, through play rather than through instruction. His enthusiasm and competence meant that he infected young female teachers with the same possibilities, and they wrote to him about their successes. By the time he retired in 1967, there were few places in Sydney or the bush where he did not have a disciple. His greatest disappointment came when it was decided that learning through play did not sit comfortably with things like the curriculum and the syllabus. If Cuisenaire rods were any good, that would be shown through test results - an understandable perspective that entirely missed the point.