Like what you've read?

On Line Opinion is the only Australian site where you get all sides of the story. We don't
charge, but we need your support. Here�s how you can help.

  • Advertise

    We have a monthly audience of 70,000 and advertising packages from $200 a month.

  • Volunteer

    We always need commissioning editors and sub-editors.

  • Contribute

    Got something to say? Submit an essay.


 The National Forum   Donate   Your Account   On Line Opinion   Forum   Blogs   Polling   About   
On Line Opinion logo ON LINE OPINION - Australia's e-journal of social and political debate

Subscribe!
Subscribe





On Line Opinion is a not-for-profit publication and relies on the generosity of its sponsors, editors and contributors. If you would like to help, contact us.
___________

Syndicate
RSS/XML


RSS 2.0

The Catch-22 of energy storage

By John Morgan - posted Tuesday, 10 March 2015


In particular, we can’t use batteries or chemical energy storage systems, as they would lead to much worse figures than those presented by Weißbach et al.  Hydroelectricity is the only renewable power source that is unambiguously viable.  However, hydroelectric capacity is not readily scaled up as it is restricted by suitable geography, a constraint that also applies to pumped hydro storage.

This particular study does not stand alone.  Closer to home, Springer have just published a monograph, Energy in Australia,3 which contains an extended discussion of energy systems with a particular focus on EROEI analysis, and draws similar conclusions to Weißbach.  Another study by a group at Stanford2 is more optimistic, ruling out storage for most forms of solar, but suggesting it is viable for wind.  However, this viability is judged only on achieving an energy surplus (EROEI>1), not sustaining society (EROEI~7), and excludes the round trip energy losses in storage, finite cycle life, and the energetic cost of replacement of storage.  Were these included, wind would certainly fall below the sustainability threshold.

Advertisement

It’s important to understand the nature of this EROEI limit.  This is not a question of inadequate storage capacity – we can’t just buy or make more storage to make it work.  It’s not a question of energy losses during charge and discharge, or the number of cycles a battery can deliver.  We can’t look to new materials or technological advances, because the limits at the leading edge are those of earthmoving and civil engineering.  The problem can’t be addressed through market support mechanisms, carbon pricing, or cost reductions.  This is a fundamental energetic limit that will likely only shift if we find less materially intensive methods for dam construction.

This is not to say wind and solar have no role to play.  They can expand within a fossil fuel system, reducing overall emissions.  But without storage the amount we can integrate in the grid is greatly limited by the stochastically variable output.  We could, perhaps, build out a generation of solar and wind and storage at high penetration.  But we would be doing so on an endowment of fossil fuel net energy, which is not sustainable.  Without storage, we could smooth out variability by building redundant generator capacity over large distances.  But the additional infrastructure also forces the EROEI down to unviable levels.  The best way to think about wind and solar is that they can reduce the emissions of fossil fuels, but they cannot eliminate them.  They offer mitigation, but not replacement.

Nor is this to say there is no value in energy storage.  Battery systems in electric vehicles clearly offer potential to reduce dependency on, and emissions from, oil (provided the energy is sourced from clean power).  Rooftop solar power combined with four hours of battery storage can usefully timeshift peak electricity demand,3 reducing the need for peaking power plants and grid expansion.  And battery technology advances make possible many of our recently indispensable consumer electronics.  But what storage can’t do is enable significant replacement of fossil fuels by renewable energy.

If we want to cut emissions and replace fossil fuels, it can be done, and the solution is to be found in the upper right of the figure.  France and Ontario, two modern, advanced societies, have all but eliminated fossil fuels from their electricity grids, which they have built from the high EROEI sources of hydroelectricity and nuclear power.  Ontario in particular recently burnt its last tonne of coal, and each jurisdiction uses just a few percent of gas fired power.  This is a proven path to a decarbonized electricity grid.

But the idea that advances in energy storage will enable renewable energy is a chimera – the Catch-22 is that in overcoming intermittency by adding storage, the net energy is reduced below the level required to sustain our present civilization.

  1. Pages:
  2. 1
  3. Page 2
  4. All

This article was first published in Chemistry in Australia.



Discuss in our Forums

See what other readers are saying about this article!

Click here to read & post comments.

76 posts so far.

Share this:
reddit this reddit thisbookmark with del.icio.us Del.icio.usdigg thisseed newsvineSeed NewsvineStumbleUpon StumbleUponsubmit to propellerkwoff it

About the Author

John Morgan is Chief Scientist at a Sydney startup developing smart grid and grid scale energy storage technologies. He is Adjunct Professor in the School of Electrical and Computer Engineering at RMIT, holds a PhD in Physical Chemistry, and is an experienced industrial R&D leader. You can follow John on twitter at @JohnDPMorgan

Creative Commons LicenseThis work is licensed under a Creative Commons License.

Article Tools
Comment 76 comments
Print Printable version
Subscribe Subscribe
Email Email a friend
Advertisement

About Us Search Discuss Feedback Legals Privacy