Like what you've read?

On Line Opinion is the only Australian site where you get all sides of the story. We don't
charge, but we need your support. Here�s how you can help.

  • Advertise

    We have a monthly audience of 70,000 and advertising packages from $200 a month.

  • Volunteer

    We always need commissioning editors and sub-editors.

  • Contribute

    Got something to say? Submit an essay.


 The National Forum   Donate   Your Account   On Line Opinion   Forum   Blogs   Polling   About   
On Line Opinion logo ON LINE OPINION - Australia's e-journal of social and political debate

Subscribe!
Subscribe





On Line Opinion is a not-for-profit publication and relies on the generosity of its sponsors, editors and contributors. If you would like to help, contact us.
___________

Syndicate
RSS/XML


RSS 2.0

Agricultural movement tackles challenges of a warming world

By Lisa Palmer - posted Wednesday, 11 February 2015


Rice is a thirsty crop. Yet for the past three years, Alberto Mejia has been trying to reduce the amount of water he uses for irrigation on his 1,100-acre farm near Ibague in the tropical, central range of the Colombian Andes.

He now plants new kinds of rice that require less water. He floods his paddies with greater precision and has installed gauges that measure the moisture content of the soil. On a daily basis he can determine how much nitrogen the plants need, and he relies on more advanced weather forecasting to plan when to fertilize, water, and harvest the grain.

"We are learning how to manage the crops in terms of water, which will be a very, very good help for us now and in the future," Mejia says, adding that the current El Niño weather pattern has caused serious drought. "We have very difficult days - hot, with no rain. It's dry. There are fires in the mountains ... Growing crops makes it a complicated time here."

Advertisement

Ever since a drought devastated his yields five years ago, Mejia has been eager to integrate sweeping changes into his rice production. He believes that the weather has become more erratic and is concerned that future climate change will make rice farming even more difficult. As a result, and with the help of his local rice growers association and scientists from the International Center for Tropical Agriculture, he is embracing what has come to be known as "climate-smart agriculture." These are agricultural techniques that protect farmers from the effects of global warming and improve crop yields, while also limiting greenhouse gas emissions.

The growing move to climate-smart agriculture is strongly supported by dozens of organizations such as the World Bank, the United Nations Food and Agriculture Organization, and the CGIAR Consortium, a network of 15 international research centers that work to advance agriculture research globally. The Global Alliance for Climate-Smart Agriculture, launched last September, aims to strengthen global food security, improve resilience to climate change, and help 500 million small farmers adapt to more stressful growing conditions.

Another rationale behind climate-smart agriculture is to adjust to the new growing conditions in a sustainable fashion because yield gains experienced in the Green Revolution - particularly with rice and wheat - have stagnated. Using seeds specifically bred to withstand certain temperatures or moisture levels, coupled with better water management, can help to keep improving agricultural productivity. For example, in Rwanda projects include better management of rainfall on steep hillsides and terracing that prevents water runoff and erosion. In Senegal, various organizations are providing planting, growing, and harvesting information to women, who do the majority of farming but have historically not benefited from agriculture extension services because communications have focused on crops men tend to grow, such as corn, sorghum, and millet. The women receive text-message alerts and information on blackboards at community outposts to provide them with advice on seeds, fertilizer, planting methods, or weather patterns that affect the crops women commonly cultivate, including rice, tomatoes, and onions.

Colombia's farmers learned a hard lesson in 2010 and 2011 when drought, high temperatures, and acute water shortages devastated crops. That's one reason the country's agriculture ministry, farming organizations, development agencies, and researchers sought ways to improve resiliency, especially as climate change is predicted to increase weather variability.

Researchers at the International Center for Tropical Agriculture (CIAT) in Colombia teamed up with Fedearroz - the Colombian rice-growers association - and the Colombian Institute of Hydrology, Meteorology, and Environmental Studies to analyze climate and rice production patterns in selected regions of Colombia. Andrew Jarvis, director of the decision and policy analysis program at CIAT, says that through analysis of big data, researchers and trade groups can provide rice growers with specific recommendations to improve production practices and avoid the worst impacts of climate variability.

Farms in tropical regions and in the developing world are particularly vulnerable to climate extremes, says Jarvis, because they don't have access to good irrigation or reservoirs during the dry season. Farmers have survived by being good at adapting and adjusting to patterns of rain and weather, but increasingly erratic weather fluctuations and the pace of change can overwhelm traditional methods of coping, he points out.

Advertisement


For farmers like Mejia, who plant new fields each month to maintain a continuous cash flow, shifting production to a certain period each year runs counter to what farmers learned from their fathers and grandfathers. But increasingly unstable weather in recent years has left many farmers more willing to try new ideas. "They realize that climate change is a long-term threat," says Jarvis. "In the short term, it is showing itself as climate variability and so we need to adjust to it."

Mejia is a numbers guy and keeps careful records of his farm. Most of his recent agriculture modifications have proven successful, such as planting new kinds of rice and using greater precision of flooding the paddies exactly when they need water - hence the humidity meters. Each day he checks how much nitrogen the plants need and consults the weather equipment at the farm, such as how much rain has fallen, the wind speed, the high and low temperatures, and, most importantly, a forecast that now extends to eight days.

Previously, his rice paddies used a water rotation pattern of three to four days of flooding before they were drained. His rice grower's association told him he can get away with flooding the fields every five to eight days if he measures moisture levels in the soil. Still, the worst effect on yields has been extreme weather, and his yields have dropped 30 to 40 percent in the last two years because of a drought. As a result, he has started planting fewer fields during droughts since investments in seeds and fertilizer will almost surely be lost, he says.

  1. Pages:
  2. Page 1
  3. 2
  4. All

This article was first published on Yale e360.



Discuss in our Forums

See what other readers are saying about this article!

Click here to read & post comments.

38 posts so far.

Share this:
reddit this reddit thisbookmark with del.icio.us Del.icio.usdigg thisseed newsvineSeed NewsvineStumbleUpon StumbleUponsubmit to propellerkwoff it

About the Author

Lisa Palmer is a freelance journalist and a public policy scholar at The Woodrow Wilson Center in Washington, D.C. She reports on energy, climate change, the environment, and sustainable business for publications such as Slate, Scientific American, and The Guardian. Previously for e360

Creative Commons LicenseThis work is licensed under a Creative Commons License.

Article Tools
Comment 38 comments
Print Printable version
Subscribe Subscribe
Email Email a friend
Advertisement

About Us Search Discuss Feedback Legals Privacy