Additionally, the in vitro culture of cells suspended in liquid provides a system for the commercial production of a large quantity of plant products known as primary and secondary metabolites.
If these production systems are stable and competitively priced, they can potentially be scaled up for commercial and industrial use.
Crop production of this sort could help preserve biodiversity, since you would not need more land or forest destruction for agriculture, would use less water, and avoid using up primary land. It could be implemented anywhere on the planet, and even in space.
Advertisement
Cell and tissue culture have the potential for both basic research and applied research to develop industrial products, such as fragrances, dyes, gums and resins, especially for countries such as Colombia that have considerable plant biodiversity. But they are rarely implemented in these countries - most of the research is carried out in developed countries with relatively little biodiversity.
Biodiversity is important here because cell culture aims to reproduce the original, parental material, so this needs to be of sufficiently high quality. Any plant parts used for tissue culture must also be of similarly high quality.
Cost concerns
Most of the existing research in this field focuses on the production of secondary metabolites, partly because traditional agricultural systems are widely seen as being more economically feasible and secure for food production. But climate change could swing the balance towards cell culture.
The high cost of cell culture is largely attributable to the technological tools it requires, so at the moment it is not really feasible for developing countries to produce their food in this way. But as so often happens with technology, once it gains popularity and becomes widely used, competition soon drives the price down.
It seems, though, that there has never been a thorough cost analysis of the whole process, from basic production through cell cultures to pilot industrial-scale production, with costs being evaluated at each stage.
When cell culture techniques have been properly costed in this way, they can be compared with conventional agricultural production of the same crop under natural conditions, and the environmental benefits can also be compared.
Advertisement
In 20 to 30 years this new production system could help to feed the world and give us opportunities to survive in the event of an environmental catastrophe.
But for that to happen, it must be implemented worldwide as soon as possible, so we can be prepared for whatever the future brings.
Discuss in our Forums
See what other readers are saying about this article!
Click here to read & post comments.
13 posts so far.