The word efficiency carries a meaning immersed in all things positive - you never hear that being more efficient could possibly be detrimental. In fact, if you can bear the evangelical fervour, you may have read about achieving “Factor Four” or “Factor Five” gains in energy efficiency, as part of a “Natural Capital” revolution a “decoupling” economic growth from a growth in the consumption of exhaustible resources - aka “sustainability”. You may even have heard that I=PAT, where environment impact (I) is a function of population (P), affluence (A) and technology (T), and that becoming more efficient will enable a desired level of affluence with far less environmental cost.
Believe me, this is all nonsense, and indeed counterproductive to the stated aims of curbing resource use and decreasing negative environmental externalities.
When it comes to natural resource use, and the externalities associated with resource extraction and production, efficiency alone is the enabler of greater consumption. William Stanley Jevons first noted that technological improvement, in terms of greater efficiency and therefore productivity, was the enabler of greater coal consumption in Britain back in 1865 in his book, The Coal Question: an Inquiry Concerning the Progress of the Nation, and the Probable Exhaustion of our Coal-mines. His observation was coined Jevon’s Paradox, even though the argument that technological improvements in resource efficiency (modes of economy) leads to greater resource use was already widely accepted in the labour market:
Advertisement
As a rule, new modes of economy will lead to an increase in consumption according to a principle recognised in many parallel instances. The economy of labor effected by the introduction of new machinery throws labourers out of employment for the moment. But such is the increased demand for the cheapened products, that eventually the sphere of employment is greatly widened.
One hundred and fifty years later the modern debate is fuelled by economic ignorance, with many of the most influential economists and environmentalists remaining confused - failing to acknowledge the parallel effects of technology on the resource called “labour” and other resource inputs to the economy.
More rigorous economists have reopened the debate, under the new term rebound effects, breaking down the transition mechanisms between greater efficiency and greater resource consumption:
- Direct rebound effect: increased fuel efficiency lowers the cost of consumption, and hence increases the consumption of that good because of the substitution effect.
- Indirect rebound effect: through the income effect, decreased cost of the good enables increased household consumption of other goods and services, increasing the consumption of the resource embodied in those goods and services.
- Economy wide effects: new technology creates new production possibilities in and increases economic growth.
Genius and UCLA mathematics professor Terence Tao explains the direct effect like so:
Suppose one has to decide whether to use one light bulb or two light bulbs to light a room. Ignoring energy costs (and the initial cost of purchasing the bulbs), let's say that lighting a room with one light bulb will provide $10/month of utility to the room owner, whereas lighting with two light bulbs will provide $15/month of utility. (Like most goods, the utility from lighting tends to obey a law of diminishing returns.)
Let us first suppose that the energy cost of a light bulb is $6/month. Then the net utility per month becomes $4 for one light bulb and $3 for two light bulbs, so the rational choice would be to use one light bulb, for a net energy cost of $6/month.
Now suppose that, thanks to advances in energy efficiency, the energy cost of a light bulb drops to $4/month. Then the net utility becomes $6/month for one light bulb and $7/month for two light bulbs; so it is now rational to switch to two light bulbs. But by doing so, the net energy cost jumps up to $8/month.
So is a gain in energy efficiency good for the environment in this case? It depends on how one measures it. In the first scenario, there was less energy used (the equivalent of $6/month), but also there was less net utility obtained ($4/month in this case). In the second scenario, more energy was used ($8/month). but more net utility was obtained as a consequence ($7/month). As a consequence of energy efficiency gains, the energy cost per capita increased (from $6/month to $8/month); but the energy cost per unit of utility decreased (from 6/4 = 1.5 to 8/7 ~ 1.14).
Advertisement
The indirect effect is more subtle and it is the environmental cost of consumption of other goods due to costs saved on, for example, lighting. If, in the above example, lighting costs were reduced to $2 per bulb for the room, it would be rational to spend $4 on lighting (using two bulbs) and spend the $2 saved on lighting to consume other goods which themselves have energy use embodied in their production.
Finally, the economy wide effect occurs due to stimulated demand for other goods and efficiency gains being shared across other sectors (due to the principle of the indivisibility of economic productivity - the linked article is highly recommended).
These economy wide effects have gained recent attention in The Economist where it is estimated that energy efficient lighting will contribute to greater energy use in the long run. You will note from the comments the cognitive dissonance of economists when referring to labour and other resource inputs remains.
Discuss in our Forums
See what other readers are saying about this article!
Click here to read & post comments.
24 posts so far.